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1 Overview

This report summarizes the progress in image understanding of static scenes at the Uni-
verstiy of Massachusetts for the period September 1, 1987 to August 31, 1990. This work was
supported by contract F30602-87-C-0140 and partially by DARPA contract DACA76-89-C-
0017. The goal of this research program is the development and practical demonstration
of a knowledge-based approach to computer vision, which can take advantage of parallel
processing on multiple levels.

One of the main aspects of our work is knowledge-based object recognition. Knowledge-
based object recognition itself has many aspects including geometric model matching 'Bev-
eridge, Weiss, et al. 1989; Beveridge, Weiss, et al. 19901, computing pose from geometry IKu-
mar and Hanson 1989a; Kumar and Hanson 1989b; Kumar and Hanson 1990a; Kumar and
Hanson 1990b], indexing to determine which models to match ,Burns 1987,, and general
recognition strategies [Draper, Collins et al. 1989].

A prerequisite for model-based object recognition is having models of the important ob-
jects. Many of the same problems that are found in the object recognition task are also
present in the model construction task, e.g. extracting lines [Dolan and Weiss 1989; Boldt,
Weiss et al. 1989], grouping together regions and lines that are part of the same sur-
face [Williams 1990], and matching corresponding features in different views iWilliams and
Hanson 1988]. Our work also includes these aspects with particular attention to extraction
of curved lines [Dolan and Weiss 1989] and surfaces [Giblin and Veiss 1987; Grupen, Weiss
et al. 1990b; Grupen, Weiss et al. 1990a].

2 Object Recognition

In this section, we will first give an overview of techniques relevant to object recognition
and then give the details of each. A general system for object and scene interpretation, called
the Schema System. has evolved as part of a long-term research effort at UMass (Draper 1989;
Draper and Riseman 1990; Draper, Brolio et al. 1989; Hanson and Riseman 1978; Hanson
and Riseman 1987; Riseman and Hanson 1984). The results of successful experiments in the
outdoor scene domain has led to the conclusion that a declarative representation of knowledge
is easier to work with than a procedural representation especially when developing automatic
mechanisms for learning object recognition strategies (Hanson and Riseman 1989).

A particular class of object recognition problems is recognition from specific geometric
models. An approach developed by Beveridge, Weiss, et. al 'Beveridge, Weiss. et al. 1989;
Beveridge, Weiss, et al. 1990j matches straight lines extracted from an image with model lines r
projected to the image plane using an assumed location of the camera. This two-dimensional
matching scheme uses local search over the space of correspondences and solves for scale,
rotation, and translation parameters of the model which produce the best fit to the data. Cl
The model-to-image line correspondences are then used as input to a 3D pose computation.
The 3D pose refinement technique (Kumar and Hanson 1989a; Kumar and Hanson 1989b;
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Kumar and Hanson 1990a; Kumar and Hanson 1990b) has been developed to work in the
presence of outliers, i.e. incorrect matches. The robustness is achieved at some computational
cost, since the median of the error function is minimized by combinatorial methods over
the power set , all matched image and model lines, which is why the 2D matching is
important for selecting the line correspondences. The method is capable of handling up
to, but not including 50% outliers. A recent paper by Kumar and Hanson 'Kumar and
Hanson 1990a] recently established the superiority of the least-median squares algorithm over
traditional least-mean squares algorithms as well as those based on statistical M-estimation
techniques. The sensitivity of pose refinement and other related 3D inference methods to
inaccurate estimates of the image center and focal length has been theoretically established
and experimentally verified [Kumar and Hanson 1990b[. The results show that for a field of
view of 240 , an error of 10 pixels in the image center does not affect the recovered location of
the camera significantly. The error in the recovered orientation of the camera is the angular
displacement of the estimate of the image center from the true value.

Model-directed object recognition becomes much more difficult when the viewpoint of the
three-dimensional object is unknown. A popular approach is based upon the use of multiple
two- dimensional views of three-dimensional structures, and is referred to under a variety
of terms such as "aspect graphs", "generic views", and "characteristic views" (Burns 1987;
Burns and Kitchen 1987a; Burns and Kitchen 1987b; Burns and Kitchen 1988; Ikeuchi 1987).
If such systems are going to be effective, a clear understanding is required of the manner in
which the features of 2D projections vary as a function of the 3D viewing position of the
object. It is important to find metric features of an object whose variation is small over a
large range of views in order to constrain the number that must be stgred.

2.1 Learning 3D Object Recognition Strategies

The basis for recognizing objects in complex outdoor scenes varies widely in terms of the
processes utilized, the reliability of the information extracted, the efficiency of the underlying

mechanisms, and the manner in which the evidence is combined into an object hypothesis.
All of this information is certainly object- and domain-dependent. Some objects can be
distinguished on the basis of color, while others can only be identified by scene and object
context. Three-dimensional information about shape or texture of some objects might be
recovered through bottom-up vanishing point analysis, while the locations of other objects
are more easily determined by model-based point matching.

A major probiem in knowledge-directed vision is the construction of object-directed con-
trol strategies. Existing knowledge-directed systems rely on user-supplied heuristics to guide
the recognition process. Specifying these heuristics has proven a difficult and time-consuming
process. Worse still, there is no guarantee that the resulting strategies are either effective
or optimal. The goal of each recognition strategy is to identify any and all instances of
the object in an image, and give the 3D position (relative to the camera) of each instance.
The goal of the learning process is to build a strategy that minimizes the expected cost of
recognition, subject to accuracy constraints imposed by the user.
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The problem of automatically learning knowledge-directed control strategies for object
recognition is being addressed in (Draper and Riseman 1990). The system is given a de-
scription of the object and a set of user-interpreted training images. The task is to build
the most efficient object recognition strategy possible within performance constraints set
by the user. Three-dimensional 3D object recognition is approached within a generate-and-
verify paradigm. The task of learning to generate the minimal necessary set of hypotheses
is phrased as a search problem. The task of learning to verify a hypothesis is cast as a
classification problem, followed by graph optimization.

In order to recognize an object in an image, a system must compare data extracted from
the image to a description of the object class. This description, in turn, can suggest what
features to look for in the image. For example, a description in memory of "house" might
constrain the shape of a house, but not its color, since houses can be painted almost any
color. Therefore, when looking for houses, shape primitives should be extracted, but not
color features. The best strategy for recognizing a house (or any object) is determined by
its properties.

In the Schema System, object recognition is modeled as a process of applying visual
knowledge sources(KSs) to hypotheses. Knowledge sources are processing routines for image
understanding, such as 2D-,3D point matching, vanishing point analysis and straight line
extraction. Hypotheses are intermediate-level statements about the image and/or 3D world.
and can occur at many levels of abstraction. Examples of hypotheses include straight line
segments, 3D orientation vectors and volumes. At each step in the recognition process, a
knowledge source is applied to one or more hypotheses. The result is either a new hypothesis
or a discrete evidence value reflecting the quality of the original hypotheses.

An object's description determines the most efficient and accurate method for recognizing
the object. The problem, therefore, is learning which KSs to apply, when to apply them, and
how to integrate their results. Recognition strategies are represented by recognition graphs,
which are similar in many ways to decision trees. Unlike decision trees, however, recognition
graphs direct hypothesis creation as well as hypothesis classification or verification. Object-
specific strategies are learned in a two step proess. The first step involves learning which
hypotheses should be generated. The second step learns how to verify them efficiently.

This work extends the knowledge-based approach by replacing the ad-hoc control heuris-
tics of other systems with Bayesian control and classification decisions. The user, instead of
supplying heuristics in the form of if-then rules or confidence functions, specifies accuracy
requirements. We solve the problem of selecting when to execute which knowledge source
by selecting the KS that minimizes the expected cost of recognition, subject to accuracy
constraints imposed by the user. We select these KSs at compile-time in a two-step process.
The first step minimizes the number of incorrect or unnecessary hypotheses generated by
selecting those with the highest likelihood of beng correct. The second step learns how to
verify the remaining hypotheses by building a classifier and then ordering the verification
KSs so as to minimize the expected cost of verification. The resulting recognition strategy
in embedded in a recognition graph.
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2.2 Model matching using local search

A specific but important problem in computer vision is the identification of objects in
the world by matching a geometric object model to data extracted from an image. The
identification task has two parts: a) determining the correct correspondence between object
features and image features and, b) determining the position of the object with respect to
the camera. These sub-tasks are interdependent, since an object's position cannot be deter-
mined without assuming a correspondence to image features, while identifying the correct
correspondence depends on the object's 2D appearance and hence its relative position and
orientation in space.

Assuming a roughly known viewpoint, the projection of a 3D object may be translated,
rotated and scaled in the plane until it is aligned with its corresponding image features.
When both the object projection and image features are made up of straight line segments,
the type of matching problem that results is illustrated by Figure 1. We formulate this
problem in terms of combinatorial optimization, and utilize a novel local search algorithm
to solve it.

Local search is a widely recognized and effective means of solving many difficult com-
binatorial optimization prublems [Papadimitriou82; Lin73>. Put most simply. local search
is an iterative generate-and-test procedure which moves from an initial solution. via trans-
formations, to one that is locally optimal. Figure 1 illustrates this approach. One common
means of finding global optima is to take the best result from a set of independent trials.
Consider an algorithm which finds the globally optimal match with probability 1/3. The
global optimum will be found one or more times in t trials with probability 1 - (2/3)t. In this
case, 6 trials produces the optimal match with probability above 0.9. For a given domain,
empirically estimating this probability provides a principled basis for selecting the number
of trials required to achieve a desired level of confidence.

Local search matching departs substantially from the previous work in model matching,
much of which falls loosely into three categories: generalized Hough and geometric hashing,
key-feature and perceptual organization, and tree search.

How a matching algorithm performs when data is imperfect and cluttered is paramount.
Most algorithms perform well on clean data. Figure 1 illustrates the types of 'errors' we ex-
pect to find in the output of common bottom-up line extraction algorithms such as iBurns,
Hanson et al. 1986]. Data lines are often fragmented; they may extend beyond or fall short
of the point predicted by the model, and often they are skewed. Hence, the corre-ct corre-
spondence often involves mapping many data line segments to a single model line segment.
Moreover, point-wise correspondences are difficult to obtain in a reliable manner. Therefore,
as observed by Lowe [Lowe85] and Ayache [Ayache84] before us, a point-to-line measure is
preferable. Our exact measure, the integrated squared perpendicular distance between model
lines and data segments is new, and the closed form solution to the problem of minimizing
this measure subject to 2D rotation, translation and scaling is presented below.

The local search matching algorithm is implemented on a TI Explorer II Lisp machine.
In addition, a special C version is running on the Sequent multi-processor and is used to
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Figure 1: A typical matching problem and a sketch of our basic approach. In the upper left,
a rectangle model is shown in proximate registration with an instance of the model. The
four straight line segments forming the model are identified by letters, the data line segments
are numbered. A space of possible matches is determined and indicated by the tables shown
on the right. A filled in entry in the table indicates a match between a model segment and
data segment. The best match is shown in the lower left with the model rotated, translated
and scaled to fit the corresponding data. The associated correspondence is indicated in the
table on the lower right.
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perform landmark recognition for our mobile robot. The goal of these experiments is to
periodically identify known landmarks and thereby confirm and correct a mobile robot's
estimated position and orientation [Fennema, Hanson et al. 19891. Errors in position and
orientation are assumed to be modest so that distortion due to perspective projection is
constrained.

To obtain an updated position estimate, the robot navigation system first selects promi-
nent straight lines in the scene. These features are then projected into the 2D image plane
and local search matching finds an optimal correspondence between projected model lines
and extracted data lines. Data lines are extracted using the Burns algorithm "Burns. Hanson
et ad. 19861. Since each 2D model line segment is a projection of a 3D segment in the scene,
2D matching establishes a correspondence between 3D line segments and 2D line segments.
This correspondence is used by a pose refinement algorithm [Kumar 19891 to determine the
3D position and orientation of the robot.

Figure 2 shows a 512x512 image of a hallway taken from our mobile robot. The robot
navigation system uses a partial model of this environment, along with its estimated position,
to select straight lines expected to be visible and of moderate to high contrast. These are
then projected into the 2D image plane as shown in Figure 3a. Data line segments found
to be 'near' a model line and of similar orientation are considered potential matches. In
this example data line segments within 50 pixels and 0.3 radians (17 degrees) of a projected
model line segment are considered to be possible matches.

The projected landmarks shown in Figure 3a were obtained by introducing an artificial
error into the robot's position estimate in order to test our ability to match and recover
the correct 3D pose. We tested three position estimates: the true estimate. 6 inches to
the left, and 6 inches to the right. These shifts introduce some perspective distortion into
the projected 2D landmarks. Hence each case represents a different 2D matching problem.
Figure 3a shows the projections associated with shifting the estimate to the left. In 100 trials,
the optimal match was found 93/100 times for the correct estimate, 48/100 for the error to
the left, and 100/100 times for the error to the right. In each case the search space contained
roughly 280 possible individual model-data pairs. The final results of pose refinement using
the optimal 2D matches are summarized in Table 1. Note the final pose derived from
matching is always within an inch and a half of the true position. This demonstrates that
we can recover pose when small amounts of perspective distortions are present in the 2D
landmarks. Clearly, as position errors grow larger there comes a point where this method
breaks down.

2.3 View Variation of Line Segment Features

The recognition of 3D objects becomes much more difficult as the position of the viewer
relative to the object becomes less constrained or more uncertain. Part of this difficulty
comes from the fact that many important features of an object's image vary with view. For
an image feature to be useful in discrimination, its distribution of values with respect to
each object should be narrow, and the distributions with respect to different objects should
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Figure 2: 512x512 Hallway Image
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Correct Estimate r 6 Inches Left 6 Inches Right
X Y Z X Y Z X Y Z

True 40.00 4.00 3.57 40.00 4.00 3.57 40.00 4.00 3.57
SEst. 40.00 4.00 3.57 40.00 3.50 3.57 1 40.00 4.50 3.57

Derived 39.96 4.05 3.58 39.87 3.98 3.57 39.90 4.12 3.59!
Error i0.04 0.05 0.01i 0.13 0.02 0.00 0.10 0.12 0.02

Table 1: Results of 2D matching followed by 3D pose refinement. The units shown are
feet, the robot is 40.0 feet from the door shown in Figure 3 and 4.0 feet from either wall.
These results show successful recovery of 3D position for a 6 inch error in the initial position
estimate.

be well separated. Burns (Burns, Weiss et al. 1990) presents a study of the variation with
respect to viewpoint of features for projected point sets and line segments. In this paper it
is first established that general-case view-invariants do not exist for any number of points,
given true perspective, weak perspective or orthographic projection models.

The use of weak perspective makes it possible to carry out the analysis of feature variation
by analytical methods. This approximation to perspective projection is applied extensively
in object recognition research to simplify the analysis and computation for 3D object recr,g-
nition; it produces reasonable results when the camera distance is great enough, relative to
the object's extent in depth. Though there are no general-case weak-perspective invariants,
there are special-case invariants of practical importance, such as the cross ratio. The special-
case weak-perspective invariants cited in the literature are derived from linear dependence
relations and the invariance of this type of relation to linear transformation. The variation
with respect to view is then studied for an important set of 2D line segment features: the
relative orientation, size, and position of one line segment with respect to another. The anal-
ysis includes an important evaluation criterion for feature utility in terms of view-variation:
the relationship between the fraction of views (over a view sphere) and the range of values
assumed by a feature over these views. Ideally, a feature should be view-invariant, that is,
unaffected by change in view. Even if one were to use only those features whose values are
bounded over the entire sphere, that would severely restrict the possibilities. Since features
of a projection usually "blow-up" to extreme values at some (usually small) set of vie'vs, a
feature is considered here to have low view-variation if the variation is small in extent over
a large fraction of the views. For example, the relative orientation of the projection of two
lines that are parallel in 3D is always 00 under weak-perspective. The most variation in
relative orientation is for lines that are perpendicular in 3D. Even in this case, the relative
orientation will be between 60' and 1200 for 50% of the view sphere.

The information in the view-variation analysis allows determination of semi-invariant
features of an object over areas of the 3D viewing sphere, i.e. features which have a small
variation over a large fraction of views. The relationships between the range of feature
variation and the fraction of views are presented in (Burns, Weiss, et al. 1990) as a series
of graphs for the features described above, and for varying instances of 3D line segments
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pairs. The mathematical analysis embodied in this paper is generally relevant to techniques
for matching 3D models to 2D images.

The prediction-based methods developed in [Brooks81, Lowe85, Burns87, Korn871 con-
stitute a promising approach to the recognition of 3D objects in 2D images. In this ap-
proach, recognition is achieved by (1) predicting characteristics of the object projections
from all views, (2) matching these predictions against the input 2D image and (3) verifying
all promising matches by dete -nining the 3D pose of the object given the data matched. In
its most general form a prediction expresses the expected values for a sct of features of the
object's projection. A feature can be any measurement or function of the projection, and
the expectations can be any valid statement about the feature distribution.
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3 Automated Model Generation and Extension

The problem of acquiring models or modifying incorrect models is an important aspect of
object recognition and navigation. The major functional requirements of modeling for these
tasks are: accurate prediction of visual features, accurate surface orientation and curvature,
and accurate feature dimensions. The construction of positionally accurate environmental
models is a time consuming, tedious task. Ultimately, the only feasible approach for intel-
ligent systems which are required to interact with large scale changing environments is to
provide them with methods for automatically acquiring their internal models during goal-

oriented activities or unrestricted exploration. We have been active both in developing a
geometric modeling system and in developing techniques for automatic modeling. There are
many types of surface that one can fit to 3-D data. We have chosen a representation based
on a vertices, edges, and faces. This type of model is supported by Geometer (Connolly 1989.
Connolly, Kapur et al. 1989) which provides an environment that includes both planar and
algebraic faces. The techniques for automatic modeling use contours (Giblin and Weiss 1987:
Collins and Weiss 1990) and intensity information (Oliensis 1990b; Oliensis 1990c).

3.1 GeoMeter

GeoMeter was developed jointly by the University of Massachusetts at Amherst and
the GE Research and Development Center as a Common Lisp solid modeling environment
specifically oriented toward image understanding. An important goal was to have a system
available with source code on a variety of workstations, which would provide the kernel of
a modeling system for many applications including visual navigation. The system currently
runs on Symbolics, TI Explorer, VaxWorkstation, and Suns. Workstation environments are
very useful for interactive debugging of complex models, and the use of X Windows has made
the system easily portable.

The advantages of using GeoMeter are 3-fold:

1. GeoMeter provides the ability to perform the required predictions within a Lisp envi-
ronment, along with other modules in the navigation system. While there are many
other modeling systems, most of them cannot be linked directly with application soft-
ware.

2. GeoMeter contains a simple camera model expressly designed to simulate a mobile.
physical camera within a global coordinate system.

3. GeoMeter uses a multilevel representation scheme allowing parts of objects to be iso-
lated as landmarks for navigation.

For the task of modeling objects for recognition and navigation, a boundary representa-
tion of surfaces of objects is most useful. With this type of representation, the edges and
visual characteristics of the object surface are made explicit. Edges from an existing model
of the environment are projected using robot and camera parameters to obtain an ideal

11



"robot's eve" view of the world. For example, the projection of model edges can be used
either for prediction to restrict the search for line tokens in the image or for verification to
be compared with image line tokens already extracted.

Currently, for computational simplicity, straight lines are used for edges and planes for
faces, so that curved surfaces are approximated by polyhedra. However, because of the gen-
erality of the mathematical framework, it is possible to represent semi-algebraic curves and
surfaces, and +here are plans for the future to provide numerical procedures for manipulating
these objects.

3.2 Modeling curved surfaces from profiles and other features

Many researchers have worked on acquiring models automatically 'AginT73; Baker77;
Chien89; Connolly and Stenstrom 1989; Shirai7l]. Recently, work on surface reconstruction
for curved surfaces has produced notable results 'Baker89; Pentland; Vaillant90O. Neverthe-
less, recovering the structure of curved surfaces is still a difficult, open problem. The results
for simultaneously recovering motion parameters and depth of points have been poor because
of the difficulty in accurately resolving motion into rotation and translation parameters. This
problem is avoided by using known camera motion.

Giblin and Weiss fGiblin and Weiss 1987] have developed a method to compute depth
and curvatures for occluding contours as well as creases and surface markings. This approach
has been extended to general motion [Vaillant90] and to use differential measurements to
reduce errors in recovered curvature 'Blake and Cipolla 1990].

There are many ways to model the geometry of a surface. Since one of the goals of
the system is to integrate data from multiple views of the surface, it is important that the
model be easily modified locally without producing changes to parts of the surface that are
not being measured. In addition, since the data is sampled non-uniformly on the surface
and contains errors, it important that the model be able to reflect the uncertainty of the
observations. The approach that we have selected for modeling the data is triangular planar
patches with uncertainties in the surface normal and the distance from the plane to the
origin. The triangles are produced by tracking two-dimensional line segments over three or
more frames.

An important issue is how to maintain consistency as new data is added. Occluding
contours provide estimates on the maximal extent of a surface and therefore one endpoint
of a confidence interval for a surface patch. An extremal boundary defines a cone from the
camera focal point, and the surface must lie within this cone FConnolly and Stenstrom 1986.
At any time, the set of cones from multiple views can be used to detect inconsistency of
the model with the visual data. It would also be possible to integrate tactile sense data,
which would define a normal to the surface, and the extent of the object would also be
constrained in that direction. This is particularly useful for concave surface elements where
visual data may not be available. In addition, surface cuivatures provide information about
the reliability of a planar approximation to the surface, i.e. how far on the surface one can
extrapolate the values from a planar patch.
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3.3 Recovering Shape from Shading

Shape from shading has traditionally been considered an ill-posed problem. However. in
recent work, Oliensis (Oliensis 1990a; Oliensis 1990c) has demonstrated that the solutions
to shape from shading are often well-determined, with little or no ambiguity. For the case of
illumination that is symmetric around the viewing direction (i.e. the light source is behind
the camera), it was shown in (Oliensis 1989) that there is in general a unique solutin to
shape from shading. This proof is valid for general Lambertian objects (without holes), and
is the first proof that the problem of shape from shading can be well-posed in general. These
arguments were extended to the case of general illumination direction in (Oliensis 1990c).
where it was demonstrated that, in this case also, the solutions to shape from shading
are strongly constrained over much of the image. These results follow from a combination
of local uniqueness theorems and global arguments concerning the properties of the flow
of characteristic strips, both derived from the mathematical theory of dynamical systems
theory. The essential constraints restricting the solution space are shown to be provided by
the singular points in the image. Also, characteristic strips are given a simple interpretation
as space curves, and demonstrated to be independent of the viewing direction.

It has long been an open question whether the image of the occluding boundary provides
additional constraints on the solution to shape from shading. In (Oliensis 1990c), it is
proven analytically that the answer to this question is negative. Specifically. for a lucal
image patch containing a portion of the boundary, the problem of shape reconstruction is
shown to be ill-posed. Shape reconstruction is actually more ambiguous in the neighborhood
of an occluding boundary segment than it is in the neighborhood of an interior image curve.
The proof, which applies to a Lambertian surface illuminated from a general light source
direction, is based on recasting the basic characteristic strip equations of Horn in a form
that is completely non-singular on the occluding boundary.

Also, an example is presented in (Oliensis 1990c) in which a small image region bordering
the image of the occluding boundary yields an ambiguous shape reconstruction. even though
the image contains both singular points and the whole of the occluding boundary. This exam-
ple demonstrates that shape from shading can be well-posed and ill-posed simultaneously:
although the shape corresponding to most of the image is actually uniquely determined, the
shape corresponding to the specified small image region is ill-determined. It is argued that,
in general, these ill-posed regions are probably small fractions of the image, but that they
can occur frequently, in images both with and without visible occluding boundaries, and in
practice may lead to instabilities and errors in shape reconstruction algorithms.

Finally, Ohensis has developed (Oliensis 1990b; Oliensis 1990c) a new local algorithm
for reconstructing shape from shading using a general quadratic surface model. The new
constraints for shape from shading should be investigated for their potential for robust
surface reconstruction in combination with the information obtained from contours by the
Giblin-Weiss algorithm.
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3.4 Determining orientation of planar surfaces from stereo line
correspondences and vanishing points

One particular aspect of modeling is determination of orientation of straight lines and
planar surfaces. Collins (Collins and Weiss 1990) has developed a system to compute the
orientation of 3D lines directly from stereo line correspondences without first computing
point depths, in contrast to methods that compute depth in order to obtain the orientation
of line segments. After computing line directions, it is possible to efficiently discover coplanar
lines and thereby recover the orientation and position of planar surfaces in the scene.

The problem of obtaining reliable and accurate estimates of line and surface orientations
obtined either from stereo line correspondences or vanishing point analysis is addressed by
confidence regions. Since orientations are represented as unit vectors, statistical techniques
for estimating the axes and uncertainty of point distributions on the unit sphere must be
used. Bingham's distribution is versatile in that it can describe both equatorial and bipolar
distributions depending on the parameter values. Statistical parameter estimation based on
Bingham's distribution, as well as a general nonparametric estimation method, are used to
solve for the polar axis of a great circle of points and to represent the statistical uncertainty
in the resulting orientation estimate.

One of the methods we have for deriving orientation information from static images is the
estimation of a unit vector perpendicular to a number of derived unit vectors. For instance,
under perspective projection a ray pointing towards the intersection of a group of converging
image line segments is perpendicular to their projection plane normals. This has applications
in finding vanishing points and in locating the focus of expansion of a pure translational flow
field. Furthermore, the normal to a planar surface is perpendicular to the direction of all
lines lying on that surface. The problem of estimating a vector mutually perpendicular to
several unit vectors can be characterized as estimating the polar axis of a great circle on
the unit sphere. Bingham's distribution, which represents the intersection of a 3D Gaussian
distribution with the surface of the unit sphere, is introduced to describe such an equatorial
distribution of unit vectors. However, statistical parameter estimation based on Bingham's
distribution is somewhat expensive computationally. Collins and Weiss (Collins and Weiss
1990) develop a more convenient alternative based on linear-least-squares plane fitting. In
addition, they consider the problem of estimating the orientation and uncertainty of the
cross product of two uncertain unit vectors. The tentative solution is to form a Gaussian
approximation to the "intersection" of two equatorial Bingham distributions.

The above methods are illustrated using two examples (Collins and Weiss 1990). The
first involves reconstruction of planar surfaces using stereo line correspondences . If relative
pose of the stereo cameras can be determined, then the orientation of lines in the world can
be computed as the cross product of the projection plane normals of its two corresponding
images, one in each image plane. The projection plane is the plane containing the image
line and the camera focal point. Given a set of lines hypothesized to lie on a single planar
surface, the plane orientation and uncertainty can be computed as the pole of a great circle
formed from the uncertain line orientation estimates.
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Figure 4: Matched input lines from the left image of a stereo pair are shown in the upper

left; also shown are 3 sets of lines consistent with hypothesized surface planes.

The second example involves the analysis of vanishing points (Collins and Weiss 1989).

The images of parallel 3D lines converge to a vanishing point in the projective image plane.

A ray constructed from the camera focal point towards the vanishing point has the same 3D

orientation as the original world lines. The line orientation and its approximate confidence

region on the unit sphere is estimated as the polar axis of a great circle of projection plane

normals. Furthermore, surface plane orientations are hypothesized as the cross product of

these uncertain line directions.

Having first computed 3D line directions, it is possible to discover coplanar lines and

thereby recover the orientation and distance of the planar surfaces that contain them. This

is done in two stages. First the lines are broken into groups consistent with a family of

parallel planes, then distances are finally computed to partition the lines into sets consistent

with individual plane equations.

Figure 4 shows an example of the partition created for a stereo hallway image. The

algorithm forms hypotheses of all three visible wall planes, and correctly identifies that one

plane orientation is shared by two parallel planes at different depths.

15



3.5 Automated Model Extension

Two preiiminary experiments have been performed using the 3D pose refinement algo-
rithm to extend a partial model from a set of known points to include unknown points: these
experiments are described in more detail in (Kumar and Hanson 199(Jb). The known model
points are used to locate new points in the world coordinate system from pose refinement and
triangulation over the induced stereo baseline obtained from a pair of 3D poses (e.g. location
and orientation of the camera for each image). In both experiments, an image sequence was
obtained for which the three- dimensional location of a set of points in the environment was
known (the model). Image features are tracked over a sequence of frames using a token-based
hne tracker (Williams and Hanson 1988a; Williams and Hanson 1988b. Williams and Han-
son 1988c), which provides the token correspondences. The 3D pose estimation algorithm
described earlier is applied to each frame to map each feature into a stable world coordinate
frame. The 3D pseudo-intersection of the rays passing through the camera center and the
image feature point in each image frame is found using an optimization technique which
minimizes the sum-of-squares of the perpendicular distances from the 3D pseudo- intersec-
tion point to the rays. In effect, this induces a stereo baseline between frames from which
the 3D coordinates of the unknown features can be obtained by triangulation. ote that the
computation of the location of new points in the world coordinate system is not sensitive to
accurate estimation of the image center.

4 Perceptual Organization

Image understanding and model acquisition require the extraction of appropriate struc-
tures from images. This includes detecting lines and regions and forming geometric structures
for matching or grouping them together into surfaces.

Dolan (Dolan and Weiss 1989) is extending the perceptual grouping mechanisms devel-
oped by Boldt (Boldt, Weiss et al. 1989) for straight lines to the case of general curves.
Like the straight line system, the curve grouping algorithm relies on the Gestalt principles of
proximity and good continuation and employs an iterative token-based approach to search
for and describe significant curve structures (including straight lines, conic arcs. inflections,
corners, and cusps).

Williams (Williams 1990) has developed a system for perceptually organizing surface
boundaries based on figural clues alone, although results have only been demonstrated in
the 'Colorforms' domain and other simple scenes. The system has. however, successfully
extracted Kanizsa's occluding triangle and has correctly analyzed relatively complex scenes
containing multiple occluding surfaces. Detailed results are presented in Williams (Willams
1990). The current system is designed to complete gaps in the straight sections ,f occluded
contours but isn't vet able to cope with more complex occlusions, such as missing corners 4-,r
missing sides.
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4.1 Perceptual Organization of Curves

The system iterates a cycle of linking, grouping, and replacement over a range f per-
ceptual scales., but within each iteration processing occurs indepenuently at ,ach token.
Each token is linked to other tokens that are likely to be its neighbors along some c,:ntoJur.
Sequences of linked tokens are analyzed and classified based on the geometric structure
they exhibit. Appropriate replacement tokens are then generated to explicitly describe and
replace each sequence. Beginning with initial edge tokens (unit tangents centered at edge
locations), curved structure is discovered in a bottom-up, local-to-global fashion and a multi-
scale description results. The computational complexity inherent in an, gr,-,uping pr,,cess
is managed here by searching locally within a perceptual window (which defines the local
scale) and by explicitly replacing a sequence of tokens by a single token at the next scale.

Since the work previously reported in (Dolan and Weiss 1989), a parallel ve(rsi,,n of the
grouping algorithm has been implemented in anticipation of parallel hardware. Here, the
grouping process is simultaneously applied to the perceptual window (i.e. context) around
each token for potential grouping and replacement, and parallel replacement -,f the aggregate
tokens is assumed to take place simultaneously. A consequence of a highly distributed
and parallel grouping process is that redundant descriptions arise because the c,_,ntexts o.f
nearby tokens overlap, and overlapping aggregate tokens are produced. Dolan is currently
developing methods to identify and eliminate such redundancies by representing multiple
types of relationships in the link graph; this will allow redundancy, as well textural structures
to be dealt with in this parallel framework.

4.2 Perceptual Organization of Occluding Contours

Contours corresponding to surface boundaries are readily perceived or completed by hu-
man observers even when local evidence in the form of measurable image brightness gradients
is completely absent. A classic example of the former is the Kanizsa triangle, in which the
illusory contours of the 'occluding' triangle are visually compelling, even though there is
scant evidence for their existence. An example of completion occurs when one surface is
partially occluded by a second (opaque) surface.

In Williams' system, the mechanisms of occlusion of one surface by another are captured
in a set of integer linear constraints. These constraints ensure that the outputs of a contour
grouping process is physically valid and consistent with the image evidence. Among the
many feasible solutions, the most compelling is the solution which best explains the presence
and form of the image structure. The problem of computing a complete and consistent
surface boundary representation is thus reduced to solving an integer linear program.

Image contours corresponding to discontinuities in depth are called occluding contours.
Robust computation of the 21D sketch 'Marr82j under the most general conditions is proba-
bly impossible without additional constraints derived from occluding contours. Accordingly,
understanding the grouping processes which create occluding contours is an important prob-
lem in computer vision. Happily, the semantics of the 21D sketch can provide objective
grouping criteria. Whether the human visual system is willing or unwilling to complete a
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Figure 5: A Colorforms Kanizsa Triangle.

gap in an image contour is determined by a non-local process with knowledge of the me-
chanics of surfaces and occlusion.

As a test domain, we chose simple scenes built from flat, polygonal vinyl cutout surfaces
of uniform reflectance called Colorforms. The current system is designed to complete gaps
in the straight sections of occluding contours, but isn't able to cope with more complex
omissions such as missing corners or missing sides. Nevertheless, even with this restriction,
it is able to solve relatively complex perceptual problems such as the construction of an
illusory triangle in a Colorforms equivalent of the Kanizsa TriangleiKanizsa761 (Figure 5).
The system operates in two stages: 1) A problem posing stage; and 2) A problem solving
stage' .

In the problem posing stage image evidence is collected and incorporated in a graph,
called the contour graph. The contour graph is an explicit representation of primztive image
structure rWitkin831 and corresponds approximately to Marr's full primal sketch iMarr82.
It is composed of two types of vertices and three types of edges. Every vertex is located at a
point in the image and every edge is a contour joining two vertices. The initial edges of the
contour graph are called image Ines, and are the output 2 of Boldt's zero crossing grouping
algorithm Boldt, Weiss et al. 1989] (Figure 6).

Image lines are contours with a measurable image brightness gradient. Each image line
joins its two endpoints, which are the initial vertex type. Proximal endpoints of image lines
satisfying certain other simple criteria are joined with a second edge type called a corner.
Next, all pairs of roughly collinear image lines (as determined by the mean square error of
a line fit to the four endpoints) are identified. The near endpoints of each such pair are

'The notion that visual perception is cognitive problem solving is due to Rock [Rock83; Rock871.
2 1n the case of the Colorforms Kanizsa Triangle, all evidence of the center triangle was first removed by

filtering the initial zero crossing segments on gradient magnitude.
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Figure 6: The optimal feasible solution.

joined by a third edge type, the virtual line rKanizsa76; Marr82]. Finally, wherever a virtual
line intersects another virtual line, or a virtual line intersects an image line, the two lines
are split into four sub-segments and joined by a new type of vertex, called a crossing. This
insures that the graph remains planar.

By writing a fixed number of linear constraints for each vertex and edge in the contour
graph, an integer linear program is generated. During the problem solving stage, branch
and bound search and the Simplex algorithm are used to find its optimal feasible solu-
tion[Burnett91]. The optimal feasible solution defines the boundary graph, which is a labeled
sub-graph3 . The edges of the boundary graph are labeled with a sign of occlusion and a
depth index (hidden lines are displayed dashed). The boundary graph corresponding to the
optimal feasible solution of the integer linear program is depicted in Figure 7. An alternate
organization, which is a feasible but non-optimal solution, appears in Figure 8.

3This is consistent with Witkin and Tenenbaum's[Witkin83] view that "naively perceived structure sur-
vives more or less intact when a semantic context is established.., the difference between naive and informed
perception amounting to little more than labeling the perceptual primitives."
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Figure 7: A feasible solution which is non-optimal.
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